organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jeroen van Ameijde,^a Andrew R. Cowley,^b* George W. J. Fleet,^a Robert J. Nash,^c Michela Iezzi Simone^a and Raquel Soengas^a

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, ^bChemical Crystallography Laboratory, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and ^cMolecular Nature Ltd, Insitute of Grassland and Environmental Research, Aberystwyth SY23 3EB, Wales

Correspondence e-mail: andrew.cowley@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.002 Å R factor = 0.028 wR factor = 0.034 Data-to-parameter ratio = 7.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-Amino-5-deoxy-2-C-hydroxymethyl-2,3-O-isopropylidene-D-talono-1,5-lactam

The title compound, $C_{10}H_{17}NO_6$, was prepared by carrying out three $S_N 2$ displacements on a branched sugar derivative, one of which was not planned. Its crystal structure was determined to confirm the identity and stereochemistry of the product.

Received 3 September 2004 Accepted 7 October 2004 Online 30 October 2004

Comment

Even though the value of carbohydrate building blocks to provide access to enantiomerically pure synthetic materials is well recognized, there are no easily available branched sugar intermediates (Bols, 1996). The Kiliani reaction on cheap ketoses, although hitherto hardly explored, produces protected branched carbohydrates easily. Such materials are likely to have many uses, but initially we are studying the easy preparation of branched sugar mimetics in which the ring oxygen of the sugar is replaced by nitrogen (Winchester & Fleet, 1992; Asano et al., 2000). The biological properties of branched alkaloids are promising (Ichikawa & Igarashi, 1995, Ichikawa et al., 1998), but the difficulties in the synthesis of such compounds have hindered a substantive investigation of these properties. The branched diacetonide (I) was readily prepared from D-fructose and was readily transformed into the trifluoromethanesulfonate (2). It was anticipated that treatment of (2) with an oxygen nucleophile would result in a single inversion of configuration at C5. However, the major product isolated, (3) had undergone inversion of configuration at both C4 and C5. The alcohol (3) was elaborated by standard reactions to the title lactam (4), the structure of which is hereby firmly established by X-ray crystallographic analysis. The configuration at C4 of the lactam (4) unequivocally demonstrates that an unexpected double inversion took place in the transformation of (2) to (3).

The NH and OH groups all form clearly defined intermolecular hydrogen bonds, linking bilayers of molecules running parallel to the crystallographic *ab* plane.

Experimental

The lactam (4) was prepared from the diacetonide (1) derived from fructose (Hotchliss et al., 2004). The title material was crystallized from methanol to yield colourless plates.

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

Crystal data

 $\begin{array}{l} C_{10}H_{17}NO_6\\ M_r = 247.25\\ Monoclinic, P2_1\\ a = 6.1266 (2) \mbox{\AA}\\ b = 6.7254 (2) \mbox{\AA}\\ c = 13.8419 (5) \mbox{\AA}\\ \beta = 99.6456 (14)^\circ\\ V = 562.28 (3) \mbox{\AA}^3\\ Z = 2 \end{array}$

Data collection

Nonius KappaCCD diffractometer ω scans Absorption correction: multi-scan (*DENZO/SCALEPACK*; Otwinowski & Minor, 1997) $T_{min} = 0.96, T_{max} = 0.98$ 5291 measured reflections

Refinement

Refinement on F
R = 0.028
wR = 0.034
S = 1.10
1211 reflections
170 parameters

lable l		
Hydrogen-bonding	geometry (Å, °).

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O6 ⁱ	0.94 (3)	1.96 (3)	2.8510 (19)	156 (3)
$O2-H2\cdots O1^{ii}$	0.86 (3)	1.89 (3)	2.7408 (17)	169 (3)
O5−H3···O2 ⁱⁱⁱ	0.91 (4)	1.86 (4)	2.7338 (18)	161 (3)
$\rm O6{-}H4{\cdot}{\cdot}{\cdot}O5^{iv}$	0.93 (3)	1.75 (3)	2.6610 (18)	167 (3)

 $D_x = 1.460 \text{ Mg m}^{-3}$

Cell parameters from 5291

Mo $K\alpha$ radiation

reflections $\theta = 5-28^{\circ}$

 $\mu = 0.12 \text{ mm}^{-1}$

Plate, colourless

 $0.38 \times 0.38 \times 0.14 \text{ mm}$

1372 independent reflections

1211 reflections with $I > 3\sigma(I)$

H atoms treated by a mixture of

Weighting scheme: see text

independent and constrained

T = 150 K

 $R_{\rm int}=0.030$

 $\theta_{\max} = 27.4^{\circ}$ $h = -7 \rightarrow 7$

 $k = -8 \rightarrow 8$ $l = -17 \rightarrow 17$

refinement

 $(\Delta/\sigma)_{\rm max} = 0.003$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Symmetry codes: (i) $-x, y - \frac{1}{2}, 1 - z$; (ii) 1 + x, y, z; (iii) x, 1 + y, z; (iv) x - 1, y, z.

The weighting scheme used a Chebychev polynomial (Watkin, 1994, Prince, 1982): $w = \{1 - [(F_o - F_c)/6\sigma(F)]^2\}^2/[1.14T_0(x) + 0.561T_1(x) + 0.916T_2(x)], \text{ where } x = F_c/F_{\text{max}}.$

Friedel pairs of reflections were merged prior to use in refinement. The absolute configuration of the compound was assumed on the basis of that of the optically pure starting material. The NH and OH H atoms were located in a difference Fourier map and their coordinates and isotropic displacement parameters were subsequently refined. All other H atoms were positioned geometrically (C-H = 1.00 Å), with isotropic displacement parameters set equal to $1.2U_{eq}$ of the parent atom.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *COLLECT* and *DENZO*; program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Better-

Figure 1

View of the title molecule, showing displacement ellipsoids at the 40% probability level. H atoms are shown as spheres of arbitrary radius.

idge *et al.*, 2003); molecular graphics: *ATOMS* (Shape Software, 2002); software used to prepare material for publication: *CRYS-TALS*.

Financial support (to RS and MIS) provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). *Tetrahedron Asymmetry*, **11**, 1645–1680.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Bols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley and Sons.
- Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). *Tetrahedron Lett.* **45**. Accepted.
- Ichikawa, Y. & Igarashi, Y. (1995). Tetrahedron Lett. 36, 4586-4587.
- Ichikawa, Y., Igarashi, Y., Ichikawa, M. & Suhara, Y. (1998). J. Am. Chem. Soc. 120, 3007–3018.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
- Shape Software (2002). ATOMS for Windows. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Watkin, D. J. (1994). Acta Cryst. A50, 411-437.
- Winchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199-210.